Modeling Short-Term Preferences in Time-Aware Recommender Systems
نویسندگان
چکیده
Recommender Systems suggest items that are likely to be the most interesting for users, based on the feedback, i.e. ratings, they provided on items already experienced in the past. Time-aware Recommender Systems (TARS) focus on temporal context of ratings in order to track the evolution of user preferences and to adapt suggestions accordingly. In fact, some people’s interests tend to persist for a long time, while others change more quickly, because they might be related to volatile information needs. In this paper, we focus on the problem of building an effective profile for short-term preferences. A simple approach is to learn the short-term model from the most recent ratings, discarding older data. It is based on the assumption that the more recent the data is, the more it contributes to find items the user will shortly be interested in. We propose an improvement of this classical model, which tracks the evolution of user interests by exploiting the content of the items, besides time information on ratings. When a new item-rating pair comes, the replacement of an older one is performed by taking into account both a decay function for user interests and content similarity between items, computed by distributional semantics models. Experimental results confirm the effectiveness of the proposed approach.
منابع مشابه
سیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملEvolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System
The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015